Главная
Пусто Нет баллонам
Пусто  Поставка газов Пусто  Продажа оборудования
 Газы и технологии Пусто  Применение газов
↓ Газы и технологии →

1. Азот N2
1.1. Общая информация
1.1.1. Азот. Атом и молекула азота
1.1.2. Жидкий азот

1.2. Покупной азот
1.2.1. Где покупают азот? Рынок азота
1.2.2. Покупать азот или производить его?

1.3. Получение азота
1.3.1. Химическое получение азота
1.3.2. Производство азота из воздуха
1.3.3. Сравнение способов производства
1.3.4. Рынок оборудования для пр-ва азота

1.4. Использование азота.
1.4.1. Опасен ли азот? Азотная асфиксия
1.4.2. Взрывоопасные концентрации O2 при контакте с углеводородами и др. веществами
1.4.3. Содержание O2 в воздухе при сбросе газа с генераторов N2

2. Кислород O2
2.1. Кислород - общая информация

2.2. Получение кислорода
2.2.1. Электролиз воды → O2 и H2
2.2.1.1. Электродный потенциал

3. Водород H2

4. Диоксид углерода CO2
4.1. Общая информация о CO2
4.2. Твердый CO2 - сухой лед
4.3. Получение CO2

5. Ацетилен C2H2
5.1. Ацетилен C2H2
5.2. Безопасность при работе с баллонами

I. Разная информация
Избыточное и абсолютное давление
Цветовое кодирование труб
Выбор упаковки пищепродуктов
 

1.3.2. Производство азота из воздуха

Для практического использования, будь то в лабораториях или на крупных промышленных предприятиях, азот получают тремя основными способами, все которые основаны на разложении атмосферного воздуха: 1) методом криогенного разложения воздуха, 2) с помощью короткоцикловой безнагревной адсорбции, и 3) методом мебранной диффузии.

Криогенное разложение воздуха

Криогенный способ воздухоразложения был изобретен германским ученым Карлом фон Линде более 100 лет назад (кстати отметим, что имя фон Линде и в наше время носит компания Linde Gas - один из крупнейших мировых подрядчиков по поставке газов промышленным предприятиям). Этот способ сводится к фракционной перегонке сжиженного атмосферного воздуха, и основан на различии в температурах кипения (испарения) его составных частей: азота, кислорода, аргона и других газов. Вратце, процесс заключается в следующем: вначале, атмосферный воздух сжимается до высокого давления. После сжатия, из сжатого воздуха удаляются твердые примеси, влага, а также двуокись углерода (углекислый газ CO2). Очищенный сжатый воздух подвергается обратному расширению, в результате чего охлаждается до степени сжижения составляющих его газов. После этого, полученная жидкость постепенно испаряется, и по мере испарения из нее пофракционно извлекаются азот (температура кипения -196°C), кислород (температура кипения -183°C), аргон и другие редкие газы.

Способ экономически оправдан только при значительной потребности в азоте. Обычно, криогенные азотные установки используются крупными предприятиями химической и металлургической промышленности: первые получают азот для дальнейшего его связывания с водородом процессом Хабера с получением аммиака NH3, который затем или используется в качестве удобрения непосредственно, или конвертируется в нитрат аммиака и также используется в качестве удобрения, или используется в качестве прекурсора при синтезе других химических соединений.

Для предприятий же металлургической промышленности азот вообще часто является отходом производства: при разложении воздуха, металлургические предприятия стремятся получить, в первую очередь, кислород, который требуется для плавки стали из железной руды - а азот обычно выпускается в атмосферу и частично продается.

Криогенные установки дороги как при покупке, так и затем в обслуживании, технически сложны, имеют значительные габариты (подходят обычно только для размещения на улице), но позволяют получать азот очень высокой чистоты (порядка 99,999% и даже выше) и в очень больших количествах.

Получение азота адсорбцией кислорода

Адсорбционный способ выделения азота из воздуха основан на различиях в размере молекул основных составных частей воздуха: азота и кислорода. Адсорбционная установка по получению азота состоит из емкостей-адсорберов (обычно парных, иногда имеющихся в большем четном количестве), заполненных адсорбентом - углеродными молекулярными ситами, или сокращенно CMS, от английского "Carbon Molecular Sieve". Эти молекулярные сита выглядят обычно как зерна или продолговатые цилиндрики черного цвета, диаметром 1...3 миллиметра:

Углеродные молекулярные сита
Углеродные молекулярные сита

CMS, используемые в адсорбционных установках для получения азота, имеют значительный объем пор, причем поры эти имеют входной размер порядка 3 ангстрем (=0,3 нм). Молекулы кислорода, имеющие кинетический диаметр примерно 2,9 Å, проникают в поры и задерживаются ими; молекулы азота с кинетическим диаметром 3,1 Å беспрепятственно проходят через слой адсорбента. Конечно, на практике, часть молекул кислорода проходит через адсорбент, не задерживаясь в нем; наоборот, часть молекул азота попадает в поры большего, чем расчетный 3,0 Å, размера и задерживается в них. Тем не менее, на выходе адсорбера получается газовая смесь, более или менее обогащенная азотом (отметим, что попутно CMS частично извлекают из сжатого воздуха и содержащуюся в нем парообразную влагу - и хотя для обеспечения более долгого срока службы молекулярных сит желательно подавать на вход адсорбционного генератора азота уже осушенный сжатый воздух, произведенный азот будет также и дополнительно осушен).

Так как адсорбент, углеродные молекулярные сита, имеет ограниченную емкость пор и, соответственно, ограниченную удерживающую способность, довольно быстро (в практических реализациях адсорбционных азотных генераторов, через 40...200 секунд) наступает необходимость провести его регенерацию, то есть восстановить его удерживающую способность. Для этого, давление в адсорбере резко сбрасывается в атмосферу, что вызывает выход ранее задержанных молекул кислорода из пор CMS. Для более полного восстановления CMS, после сброса давления в адсорбер подается часть вырабатываемого в это время в другом адсорбере азота, который продувается через подлежащий регенерации адсорбер под давлением чуть выше атмосферного, «вымывая» из его пор все еще остающиеся в нем после сброса давления молекулы кислорода. Полученная газовая смесь, представляющая собой воздух с несколько повышенным содержанием кислорода, выбрасывается в атмосферу. После завершения регенерации, азот в течение еще некоторого времени продолжает поступать в адсорбер, но уже при закрытом сбросном клапане, в результате чего давление в адсорбере поднимается до уровня, присутствующего в системе. (Как вариант, например, показанный на схеме выше, конструкция установки может предусматривать проведение регенерации и последующего выравнивания давления не подачей азота непосредственно из одного адсорбера в другой, а из промежуточного азотного накопителя, для чего в конструкцию азотного генератора вводятся дополнительные клапаны).

Адсорберы в адсорбционной установке периодически (в соответствии с расчетной частотой регенерации) меняются ролями: рабочий адсорбер переходит в режим регенерации, а прошедший регенерацию становится рабочим. Адсорбционный метод получения азота также называют методом короткоцикловой безнагревной адсорбции (КЦБА): короткоцикловой - из-за частой смены ролей адсорберов, безнагревной - так как регенерация CMS проводится без какого-либо нагрева продуваемого через них азота.

Схема устройства азотной установки, работающей по принципу короткоцикловой безнагревной адсорбции
Схема устройства азотной установки, работающей по принципу КЦБА

Адсорбционные генераторы азота относительно недороги как в плане капитальных вложений, так и в обслуживании, компактны, просты конструктивно и в обслуживании. Адсорбционные установки способны вырабатывать азот в небольших и средних количествах, и также, как и криогенные линии, позволяют при необходимости получать азот высокой чистоты - до 99,999% и выше. Однако, в отличие от криогенных установок, на которых получение азота низкой чистоты никогда не рентабельно, с помощью адсорбционных генераторов азота можно, если не нужна самая высокая чистота, получать и азот пониженной чистоты - 99,99%...99,9%...99% и так далее вплоть да «грязного» азота с чистотой 95% - при этом, азотная установка адсорбционного типа, отрегулированная на производство азота меньшей чистоты, будет иметь бóльшую производительность, чем та же установка, но отрегулированная на выработку более высокоочищенного газа; соответственно меняются и значения потребления установкой сжатого воздуха. Широкий диапазон производительности и возможной чистоты получаемого азота определяет и разнообразие применений адсорбционных генераторов азота - лабораторные модели встречаются в научных учреждениях и в лабораториях предприятий, а большие агрегаты снабжают азотом крупные производства пищевой, электронной, нефтедобывающей, маслоэкстракционной и других отраслей промышленности.

Получение азота способом мембранного разделения воздуха

Мембрана пропускает через свои стенки кислород, но не азот
Стенки мембраны легко пропускают молекулы O2, но не N2

Все основные и реально могущие быть использованы для практических целей способы получения азота основаны на разложении атмосферного воздуха. Выше мы кратко описали принцип работы адсорбционных установок по получению азота. Кроме них, существуют мембранные установки, в основе которых стоят т.н. мембранные модули воздухоразделения, представляющие собой емкости, обычно цилиндрической формы, внутри которых параллельно размещено множество волокон-«макаронин» из специальных полимерных материалов - полиимида, полисульфона, полифенилоксида. Сжатый воздух подается на вход мембранного модуля, откуда равномерно распределяется между всеми отдельными волокнами, поступая на их внутреннюю сторону. Стенки волокон представляют собой мембраны с ассиметричным расположением пор, через которые преференциально, то есть быстрее и легче всего, на внешнюю сторону волокон диффудируют молекулы воды H2O, водорода H2 и гелия He. Со средней скоростью через стенки проникают молекулы кислорода, а также углекислого газа CO2. Наоборот, преимущественно на внутренней стороне мембран остаются, из обычно содержащихся в воздухе веществ, молекулы азота, а также аргона и угарного газа CO. Как и в случае с адсорбционными азотными установками, в процессе производства азота мембранным способом он также доосушается.

Мембраны чрезвычайно чувствительны к наличию загрязнений, особенно к попаданию на них компрессорного масла. Мембранные модули большинства (но не всех) производителей нуждаются также, для эффективной работы, в специальном подогревании поступающего на их вход сжатого воздуха. Тем не менее, мембранные установки для получения азота, в целом, обычно все же несколько проще по конструкции, чем работающие по принципу короткоцикловой безнагревной адсорбции: например, КЦБА-установке требуется как минимум 2 впускных клапана (обычно, с электромагнитным приводом) для запуска сжатого воздуха в один или другой адсорбер, 2 аналогичных клапана для сброса давления из тех же адсорберов и, когда это предусмотрено конструкцией, еще 2 или более клапанов для перепускания азота из промежуточного накопителя обратно в адсорберы для проведения их регенерационной продувки и последующего выравнивания давления. Все эти клапаны у мембранного генератора азота отсутствуют.

Вход волокон в азотной мембране
Входы в волокна мембраны для выделения азота

К сожалению, сам принцип устройства мембранных установок для производства азота и сами свойства существующих в наше время материалов изготовления мембран не позволяют получение азота высокой чистоты. На практике, существующие промышленно изготавливаемые мембранные азотные генераторы ограничены «потолком» примерно в 99,5%.




© 2015 Онли боллзНдва.ру. Правила копирования материалов